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Abstract
A study is made of the power-law tail effect in the quantum particle distribution
over momentum on the nuclear fusion reactions. Our results do not support
the idea of averaging the fusion reaction cross-section over the momentum
distribution, postulated and used in many publications.

PACS numbers: 95.30.−k, 52.27.Gr, 51.30.+i, 25.70.Jj

While in classical statistics all systems of particles in equilibrium have single-particle
momentum distribution (MD), n(�p), of Maxwell–Boltzmann form, the MD in quantum
statistics has a non-Maxwellian form, contains a non-exponential tail [1–4] and plays a role
central to our understanding of interacting quantum particle systems. n(�p) has to satisfy the
sum rules ∫

n(�p) d3p = 1, (1)

1

2m

∫
n(�p)p2 d3p = Tk, (2)

where Tk is the kinetic energy.
In order for the kinetic energy integral, equation (2), to remain finite, the MD should

decline faster than p−5. The large p-behavior of n(�p) has been considered in many papers
[1–4]. It was shown that the interaction between quantum particles leads to the appearance of
a power-law tail in the MD. It was found for the first time in [2] that the zero temperature MD
for an interacting electron gas should go as 1/p8 for large p.

A general expression for n(�p) can be written as [5]

n(�p) =
∫

fγ (E, �p) dE, (3)

where the energy–momentum distribution fγ (E, �p) can be represented as [5]

fγ (E, �p) = f (E)δγ (E, �p), (4)
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f (E) is the occupation number (Fermi–Dirac, Bose–Einstein or Maxwell–Boltzmann),
δγ (E, �p) is the spectral function [5]

δγ (E, �p) = γ (E, �p)

π [(E − εp − �(E, �p))2 + γ 2(E, �p)]
, (5)

εp = p2/(2m), and γ (E, �p) and �(E, �p) are solutions of ‘complex set of integral equations’
[5].

The finite value of γ (E, �p) leads to the appearance of power-law tails in the MD.
After integration over momentum of fγ (E, �p), it is easy to obtain that the energy

distribution

nE(E) =
∫

fγ (E, �p) d3p (6)

remains exponential [6]. The difference between the two distributions, equations (3) and (6)
is related to the quantum uncertainty.

References [6, 7] have been suggested to average reaction rates over n(�p) rather than
distribution over energy nE(E) (see also [8]). Since (i) in this case quantum tails might
produce dramatic effects on the rates of nuclear and other reactions in a medium and (ii) the
provocative suggestion [6, 7] has been used in a many papers [6, 7, 9–18], it is the purpose of
the present work to examine the validity of the approximation [6, 7].

We stress here that directly measured cross sections of low-energy nuclear reactions in a
medium, when available, are higher than the expected values [19–32]. To date, the observed
enhancement factors are not completely understood [19]. An example of the effort where
environment considerations have been carried out for low-energy processes are [33–35] (see
also [36, 37] where the tunneling of bound two-body systems through a potential barrier have
been considered).

Let us first study the effect of the binding of the deuteron inside the hydrogen atom on
the example of the p–d fusion reaction. The bound deuteron does not have a definite velocity.
From its wavefunction one can calculate the deuteron velocity distribution

n(�vd) = 8

π2v3
0

1

(1 + (vd/v0)2)4
, (7)

where v0 = (me/md)e
2/h̄, and me and md are the electron mass and deuteron mas, respectively.

One has ∫
n(�vd) d3vd = 1. (8)

Now, the bound deuteron and the proton have a relative velocity

vrel = |�vd − �vp| (9)

and 〈σv〉 is then

〈σv〉 =
∫

S(E)
1

E
exp

(
−π

√
EG

E

)
vreln(�vd) d3vd, (10)

where E = µv2
rel

/
2, µ is the reduced proton deuteron mass, S(E) is the astrophysical S-factor

and EG = 2e4µ/h̄2.
In the case of small vp (vp < v0) the 〈σv〉 value, equation (10) corresponds to the

screening energy Escr ≈ 300 eV. This result is not in agreement with three-body adiabatic
calculations [8, 38] (more than 10 times larger). In our future work we will consider an
application of the Sturm-function method in the formalism of the three-body Faddeev–Hahn
equation [39, 40] for this problem.
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We consider a system of N identical quantum particles carrying the unit positive charge,
e, and contained in a volume � (periodic boundary conditions) with an uniform external
background field of the opposite sign which neutralizes the total charge of the system. The
time independent nth state wavefunctions of the system �n(�r1, �r2, . . . , �rN) with the energy En

are assumed to be normalized.
At a thermal equilibrium, n(�p) can be written as

n(�p) =
∑

n fn(�p) e−En/(kBT )∑
n e−En/(kBT )

, (11)

where fn(�p) is the probability to find a particle with the momentum p in the nth state �n

fn(�p) = 1

(2π)3

∫
e

i
h̄

�p(�r−�r ′)�∗
n(�r, �r2, . . . , �rN)�n(�r ′, �r2, . . . , �rN) d3r d3r ′

N∏
i=2

d3ri . (12)

A generalization of the Kimball method, [1], leads to the following large-p behavior of fn(�p)

lim
p→∞ fn(�p) = |ψn(0)|2 2

π

N − 1

�
h̄

m2e4

p8
, (13)

where

|ψn(0)|2 = �

∫
|�n(�r, �r, �r3, . . . , �rN)|2 d3r

N∏
i=3

d3ri (14)

and m is the particle mass. Substituting the large p asymptotic, equation (13), into equation (11)
we find the large momentum tale of the momentum distribution n(�p) at the temperature T

lim
p→∞ n(�p) = 2

π
h̄ρ

m2e4

p8
|�(0)|2, (15)

where

|�(0)|2 =
∑

n |ψn(0)|2 e−En/(kBT )∑
n e−En/(kBT )

= π

2h̄ρm2e4
lim

p→∞ n(�p)p8 (16)

is the contact probability of finding two particles at zero separation, and ρ = (N − 1)/� is
the density for N 	 1.

We thus see that the large-p behavior is governed by the contact probability of finding two
particles at short distance. Although, the power-law tail in the momentum distribution was
observed in many papers (see, for example [1–4]), it was shown for the first time in [1] that for
the ground-state coefficient of the 1/p8 term is proportional to the zero separation probability
|ψ0(0)|2.

Now, we consider the nuclear reaction between nuclei, i and j , under conditions that exist
in stellar interiors. The nuclear cross-section, σij for small collision speed is approximated by

σij (E) = Sij (E)

E
exp(−π

√
EG/E) ≈ Sij (0)

E
exp(−π

√
EG/E), (17)

where a slowly varying function with E (E 
 EG) Sij (E) is called the astrophysical S-factor,
EG = 2µijZ

2
i Z

2
j e

4/h̄2 is the Gamov energy, µij = mimj/(mi + mj) and Z denote charge
numbers. The last equation (17) is practically exact—for example, the error in the replacement
S(E) by S(0) for the proton–proton fusion, p + p →2 D + e+ + νe is only about 0.5% [41] for
energies corresponding to temperatures in the center of the sun.
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The number of reactions between nuclei of i and j species at number densities ρi and ρj

with a relative kinetic energy E is calculated as

Rij = ρiρj

δij + 1
σij (E)vij , (18)

where vij = √
2E/µij .

The Gamov rate is calculated by averaging equation (18) with the Maxwell–Boltzmann
distribution fM–B(E) at temperature T 
 EG/kB

fM−B(E) = 2

kbT

√
E

πkBT
exp

(
− E

kBT

)
. (19)

The result yields the Gamov rate [42]

RG
ij = ρiρj

δij + 1
〈σij vij 〉M−B = ρiρj

δij + 1

∫
fM−B(E)σij (E)vij dE. (20)

It is possible to rewrite the rate in terms of the contact probability (the square of the
wavefunction at the origin [43])

Rij (E) = h̄Sij (E)
ρiρj

π(1 + δij )µijZiZje2
|ψij (0)|2, (21)

where ψij is the Coulomb wavefunction with a normalization such that∫
�

|ψij (�r)|2 d3r = � (22)

over a large volume � [43]. Indeed, the square of the wavefunction at the origin then takes on
value

|ψij (0)|2 = π
√

EG/E

exp(π
√

EG/E) − 1
. (23)

For the N-body system, equations (11)–(16), the number of binary fusion reactions per
unit time and unit volume in the nth state �n(�r1, �r2, . . . , �rN) is

Rn = S(0)h̄
ρ2

πme2
|ψn(0)|2 = S(0)

ρ

2(me2)3
lim

p→∞(p8fn(�p)). (24)

In (24) |ψn(0)|2 and fn(�p) are given by (14) and (13), respectively.
At the thermal equilibrium

R =
∑

n Rn e−En/(kBT )∑
n e−En/(kBT )

= S(0)
ρ

2(me2)3
lim

p→∞(p8n(�p)). (25)

Now, we want to see if the rate R, equation (25), and the rate RQ, calculated in [15] by
averaging the pp-fusion reaction cross-section over quantum momentum distribution [3],
stand in contradiction to each other for the pp fusion in the star. To do so we note that, in the
Galitskii–Yakimets approximation for n(�p) at large momentum [3], ratio R/RQ is

R

RQ

≈ 103,

where the standard solar model parameters [44] are used.
Clearly, the error in averaging the fusion reaction cross-section over quantum momentum

distribution is that one has neglected the coupling between the various probability amplitudes
of velocity which is introduced by the quantum uncertainty.
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In conclusion, we summarize the main points of this communication.

(i) We have considered nuclear motion inside the atom and have found that for the p–d fusion
in the case of small vp, the 〈σv〉 value is not in agreement with three-body adiabatic
calculations [8, 38].

(ii) For the N-body system, equations (11)–(16), we have found a general expression for
calculating the nuclear fusion rate at thermal equilibrium, equation (25).

(iii) Our results do not support the idea of averaging the fusion reaction cross-section over the
momentum distribution, postulated in [6, 7] and used in many publications [6, 7, 9–18].
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